SIE 540 SURVEY OF OPTIMIZATION METHODS

COURSE DESCRIPTION

Survey of methods including network flows, integer programming, nonlinear programming and dynamic programming. Models development and solution algorithms are covered.

EXPECTED LEARNING OUTCOMES

Students are able to develop a working knowledge of different types of optimization methods in these directions:

- Learning solution approaches for linear/integer/dynamic/nonlinear programming and some network optimization problems.
- Developing an appropriate optimization model from a verbal description of a problem.
- · Choosing an appropriate solution technique.
- Extracting relevant information from the model and solutions.

COURSE FORMAT

- In-Personl 15-week semester
- Tailored to your professional needs
- 3-credit hour I You may apply it towards SIE MS and PhD programs
- SIE 340 or equivalent, knowledge of linear programming

?

PROGRAM DIRECTOR
Dr. Pavlo Krokhmal
krokhmal@arizona.edu

ENROLLMENT Graduate Coordinator graduateadvisor@sie.arizona.edu

COURSE SCHEDULE

LINEAR PROGRAMMING REVIEW

 Modeling, Simplex Method, Big M and Two-Phase Methods, Duality, Dual Simplex Method, Sensitivity

NETWORK OPTIMIZATION

► Transportation Problem, Transportation Simplex Method, Terminology, Shortest Path Problem, Minimum Spanning Tree Problem, Maximum Flow Problem, Minimum Cost Flow Problem, Network Simplex Method

INTEGER PROGRAMMING

 Modeling with Integer Variables and Binary Variables, Branch-and Bound Algorithm, Cutting Plane Algorithm

NONLINEAR PROGRAMMING

 Review of Differential Calculus, Types of Nonlinear Programming, Convexity of Junctions, One-Variable and Unconstrained Optimization, Convex Programming

DYNAMIC PROGRAMMING

Examples, Solution Procedure

Innovative Curriculum

FROM EFFICIENCY TO INNOVATION-LEAD THE FUTURE OF INDUSTRIAL ENGINEERING.