

COURSE DESCRIPTION

This course is an introduction to conducting statistical analysis in engineering applications. Students will explore statistical techniques used to analyze data and make informed decisions. The course is composed of a systematic introduction of the fundamental topics of engineering statistics, including:

- Data Characterization and Probability Theory
- Theoretical Basis for Statistical Inference
- Modeling and Algorithms
- Valuation Mechanism

EXPECTED LEARNING OUTCOMES

Graduate students will develop deeper understanding of theoretical foundations of statistical inference. By taking this course, both undergraduate and graduate students will possess the capability to:


- characterize and model data.
- understand the theoretical basis for statistical inference.
- apply methods and algorithms of statistical inference on engineering problems.

For graduate Students, additional learning outcomes include:

- approaches to evaluating the inference methods and algorithms.
- development of inference methods for given engineering problems.

COURSE FORMAT

- In-Person | 15-week semester
- Tailored to your professional needs
- 3-credit hour I You may apply it towards SIE MS and PhD programs
- Prerequisites: Advanced Standing

WEEK 11

▶ UMVUE

WEEK 12

WEEK 13

WEEK 14

WEEK 15

WEEK 16

Exam 2

PROGRAM DIRECTOR Dr. Pavlo Krokhmal krokhmal@arizona.edu

ENROLLMENT Graduate Coordinator graduateadvisor@sie.arizona.edu

Evaluating Point Estimators

Hypothesis Testing, LRT

Tests for Applications

Interval Estimation

Exam 2 Review

Evaluating Hypothesis Test

Size & Level of a Test, P-Value

Applications of Interval Estimation

COURSE SCHEDULE

WEEK 1

- Course Introduction and Fundamental **Data Characterization**
- Set Theory, Probability Concept and Counting Techniques

WEEK 2

- Conditional Probability & Independence, Concept of Random Variable
- Univariate & Multivariate Distribution Model

WEEK 3

- ► Marginal & Conditional Distribution Model
- Expectation & variance

WEEK 4

- Covariance & Conditional Expectation, Transformation
- Special Distributions- Discrete

WEEK 5

- ▶ Special Distributions- Continuous
- Exponential Family, Moment & Moment Generation Function (MGF)

WEEK 6

- ► Function of Random Vector, Fundamental Concepts of Statistics
- Samples from Normal distribution

- Derived Distributions
- Review for Exam 1

WEEK 8

- Order Statistics & Sufficiency Principle
- Likelihood Principle & Point Estimation

WEEK 9

- Practice Exam 1 Review
- Exam 1

- Method of Moment, Maximum Likelihood Estimation
- **Bayes Estimation**

Real-World Flexible/Interactive **Application** Learning

Bridge Theory & Practice

Innovative Curriculum

Distinguished Faculty

FROM EFFICIENCY TO INNOVATION—LEAD THE FUTURE OF INDUSTRIAL ENGINEERING.