

COURSE DESCRIPTION

This course will introduce the concepts, principles & tools to conduct statistical quality control for manufacturing & service processes. The course is composed of a systematic introduction of the fundamental topics of statistical quality engineering, including:

- · Probability Theory & Statistical Inference
- Statistical Process Control Charting
- Risk & Process Capability Assessment
- Acceptance Sampling

The emphasis is placed on understanding when and how to apply specific tolls, interpreting results correctly, and supporting future design and decision-making.

EXPECTED LEARNING OUTCOMES

- Characterize, model, and make inference from quality data.
- Apply statistical control charts for different types of quality data collected from different manufacturing and service processes.
- Assess the risks of statistical control charts and process capability.
- Understand the theoretical basis for statistical process control.
- Development of statistical quality control tools for given engineering problems.

- Highly interactive delivery | 16-week semester
- Tailored to your professional needs
- 3-credit hour I You may apply it towards SIE MS and PhD programs
- Usually offered in the Fall

PROGRAM DIRECTOR Dr. Pavlo Krokhmal krokhmal@arizona.edu

ENROLLMENT Graduate Coordinator graduateadvisor@sie.arizona.edu

COURSE SCHEDULE

LECTURE 1

Course Overview & Introduction- Ch. 1 **LECTURE 2**

▶ Modeling Process Quality-Ch. 2

LECTURE 3

► MPQ + Inferences About Quality- Ch. 2/3

LECTURE 4, 5, 6

▶ Inferences About Quality- Ch. 3

LECTURE 7, 8

Methods and Philosophies- Ch. 4

LECTURE 9

Quality Control Philosophies & Applications- Ch. 4

LECTURE 10, 11, 12

► Charting Variables- Ch. 5

LECTURE 13

Implementing Charts + Charting Attribute- Ch. 5/6

LECTURE 14

Group project discussion

LECTURE 15

CUSUM- Ch. 8

LECTURE 16

Review Session for Exam I

LECTURE 17

Exam I (in class)

LECTURE 18

CUSUM + EWMA + MA- Ch. 8

LECTURE 19

Flexible/Interactive

Learning

▶ Short Production Runs- Ch. 9-1

LECTURE 20

► SPC with Autocorrelated Data- Ch. 9-4

LECTURE 21

Process Capability- Ch. 7

LECTURE 22

Project Prep

LECTURE 23

► Gage R&R- Ch. 7

LECTURE 24

Specification/Tolerances- Ch. 7

LECTURE 25

Acceptance Sampling + Project Prep- Ch. 14

LECTURE 26

Review Session for Exam II Exam II

Innovative Curriculum

Distinguished Faculty

FROM EFFICIENCY TO INNOVATION—LEAD THE FUTURE OF INDUSTRIAL ENGINEERING.

Bridge Theory &

Practice

Real-World

Application